3.9.44 \(\int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx\) [844]

3.9.44.1 Optimal result
3.9.44.2 Mathematica [A] (verified)
3.9.44.3 Rubi [A] (verified)
3.9.44.4 Maple [B] (warning: unable to verify)
3.9.44.5 Fricas [B] (verification not implemented)
3.9.44.6 Sympy [F]
3.9.44.7 Maxima [F]
3.9.44.8 Giac [F(-2)]
3.9.44.9 Mupad [F(-1)]

3.9.44.1 Optimal result

Integrand size = 25, antiderivative size = 211 \[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\frac {\sqrt {i a-b} \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {\sqrt {i a+b} \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d} \]

output
arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a-b)^(1/2 
)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+2*arctanh(b^(1/2)*tan(d*x+c)^(1/2)/( 
a+b*tan(d*x+c))^(1/2))*b^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-arctanh 
((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1/2)*cot( 
d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d
 
3.9.44.2 Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 209, normalized size of antiderivative = 0.99 \[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\sqrt [4]{-1} \left (\sqrt {-a+i b} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+\sqrt {a+i b} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right )+\frac {2 \sqrt {a} \sqrt {b} \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+\frac {b \tan (c+d x)}{a}}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \]

input
Integrate[Sqrt[a + b*Tan[c + d*x]]/Sqrt[Cot[c + d*x]],x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-1)^(1/4)*(Sqrt[-a + I*b]*ArcTan[ 
((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] + 
 Sqrt[a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a 
 + b*Tan[c + d*x]]]) + (2*Sqrt[a]*Sqrt[b]*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d* 
x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x])/a])/Sqrt[a + b*Tan[c + d*x]]))/d
 
3.9.44.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.82, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4729, 3042, 4058, 609, 65, 219, 2035, 2257, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 4058

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{\tan ^2(c+d x)+1}d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 609

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (b \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)-\int \frac {b-a \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)\right )}{d}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 b \int \frac {1}{1-\frac {b \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}-\int \frac {b-a \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-\int \frac {b-a \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)\right )}{d}\)

\(\Big \downarrow \) 2035

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-2 \int \frac {b-a \tan (c+d x)}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\sqrt {\tan (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 2257

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-2 \int \left (\frac {i (b-i a)}{2 (i-\tan (c+d x)) \sqrt {a+b \tan (c+d x)}}-\frac {i (-i a-b)}{2 (\tan (c+d x)+i) \sqrt {a+b \tan (c+d x)}}\right )d\sqrt {\tan (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-2 \left (\frac {1}{2} \sqrt {b+i a} \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-\frac {1}{2} \sqrt {-b+i a} \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right )\right )}{d}\)

input
Int[Sqrt[a + b*Tan[c + d*x]]/Sqrt[Cot[c + d*x]],x]
 
output
((2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] 
 - 2*(-1/2*(Sqrt[I*a - b]*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a 
 + b*Tan[c + d*x]]]) + (Sqrt[I*a + b]*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + 
d*x]])/Sqrt[a + b*Tan[c + d*x]]])/2))*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x] 
])/d
 

3.9.44.3.1 Defintions of rubi rules used

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 609
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_S 
ymbol] :> Simp[d*(e/b)   Int[(e*x)^(m - 1)*(c + d*x)^(n - 1), x], x] - Simp 
[e/b   Int[(e*x)^(m - 1)*(c + d*x)^(n - 1)*((a*d - b*c*x)/(a + b*x^2)), x], 
 x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[0, n, 1] && LtQ[0, m, 1] &&  !Integ 
erQ[m] &&  !IntegerQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2257
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol 
] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a 
, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4058
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S 
imp[ff/f   Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x], x, 
 Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.9.44.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1113\) vs. \(2(171)=342\).

Time = 35.98 (sec) , antiderivative size = 1114, normalized size of antiderivative = 5.28

method result size
default \(\text {Expression too large to display}\) \(1114\)

input
int((a+b*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4/d*(a+b*tan(d*x+c))^(1/2)*(-2^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2 
+b^2)^(1/2))^(1/2)*ln(-(cos(d*x+c)*cot(d*x+c)*a-2*a*cot(d*x+c)+2*sin(d*x+c 
)*(csc(d*x+c)*(cot(d*x+c)^2*a-2*cot(d*x+c)*csc(d*x+c)*a+csc(d*x+c)^2*a-2*b 
*csc(d*x+c)+2*cot(d*x+c)*b-a)*(cos(d*x+c)-1))^(1/2)*(b+(a^2+b^2)^(1/2))^(1 
/2)+2*(a^2+b^2)^(1/2)*cos(d*x+c)+2*b*cos(d*x+c)-sin(d*x+c)*a+csc(d*x+c)*a- 
2*(a^2+b^2)^(1/2)-2*b)/(cos(d*x+c)-1))+2^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*( 
-b+(a^2+b^2)^(1/2))^(1/2)*ln((cos(d*x+c)*cot(d*x+c)*a-2*a*cot(d*x+c)-2*sin 
(d*x+c)*(csc(d*x+c)*(cot(d*x+c)^2*a-2*cot(d*x+c)*csc(d*x+c)*a+csc(d*x+c)^2 
*a-2*b*csc(d*x+c)+2*cot(d*x+c)*b-a)*(cos(d*x+c)-1))^(1/2)*(b+(a^2+b^2)^(1/ 
2))^(1/2)+2*(a^2+b^2)^(1/2)*cos(d*x+c)+2*b*cos(d*x+c)-sin(d*x+c)*a+csc(d*x 
+c)*a-2*(a^2+b^2)^(1/2)-2*b)/(cos(d*x+c)-1))+2*(a^2+b^2)^(1/2)*2^(1/2)*arc 
tan(((b+(a^2+b^2)^(1/2))^(1/2)*cos(d*x+c)-(-2*(cos(d*x+c)^2*b-sin(d*x+c)*c 
os(d*x+c)*a-b)/(cos(d*x+c)+1)^2)^(1/2)*sin(d*x+c)-(b+(a^2+b^2)^(1/2))^(1/2 
))/(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))^(1/2))-2*(a^2+b^2)^(1/2)*2^(1/2)*ar 
ctan(((b+(a^2+b^2)^(1/2))^(1/2)*cos(d*x+c)+(-2*(cos(d*x+c)^2*b-sin(d*x+c)* 
cos(d*x+c)*a-b)/(cos(d*x+c)+1)^2)^(1/2)*sin(d*x+c)-(b+(a^2+b^2)^(1/2))^(1/ 
2))/(cos(d*x+c)-1)/(-b+(a^2+b^2)^(1/2))^(1/2))-2*2^(1/2)*arctan(((b+(a^2+b 
^2)^(1/2))^(1/2)*cos(d*x+c)-(-2*(cos(d*x+c)^2*b-sin(d*x+c)*cos(d*x+c)*a-b) 
/(cos(d*x+c)+1)^2)^(1/2)*sin(d*x+c)-(b+(a^2+b^2)^(1/2))^(1/2))/(cos(d*x+c) 
-1)/(-b+(a^2+b^2)^(1/2))^(1/2))*b+2*2^(1/2)*arctan(((b+(a^2+b^2)^(1/2))...
 
3.9.44.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2838 vs. \(2 (167) = 334\).

Time = 0.63 (sec) , antiderivative size = 5709, normalized size of antiderivative = 27.06 \[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((a+b*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x, algorithm="fricas")
 
output
Too large to include
 
3.9.44.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\sqrt {a + b \tan {\left (c + d x \right )}}}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \]

input
integrate((a+b*tan(d*x+c))**(1/2)/cot(d*x+c)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(c + d*x))/sqrt(cot(c + d*x)), x)
 
3.9.44.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {\sqrt {b \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+b*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tan(d*x + c) + a)/sqrt(cot(d*x + c)), x)
 
3.9.44.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+b*tan(d*x+c))^(1/2)/cot(d*x+c)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.9.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \]

input
int((a + b*tan(c + d*x))^(1/2)/cot(c + d*x)^(1/2),x)
 
output
int((a + b*tan(c + d*x))^(1/2)/cot(c + d*x)^(1/2), x)